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Diffusion with intrinsic trapping in two-dimensional incompressible stochastic velocity fields
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A statistical approach that applies to the high Kubo number regimes for particle diffusion in stochastic
velocity fields is presented. This two-dimensional model describes the partial trapping of the particles in the
stochastic field. The results are close to the numerical simulations and also to the estimations based on
percolation theory.@S1063-651X~98!05712-2#
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I. INTRODUCTION

The motion in stochastic velocity fields describes a rat
large class of physical processes such as particle and en
transport in plasmas or passive scalar advection in turbu
fluids. The analysis of such turbulent diffusion in continuo
velocity fields relies on the general problem of relating t
Lagrangian and the Eulerian statistical quantities. The la
are defined as statistical averages evaluated at fixed poin
the laboratory frame while the corresponding Lagrang
quantities are determined at points following the motion
fluid elements. This is, in a sense, the fundamental prob
of turbulence. Taylor@1# has shown that the diffusion coe
ficient is the time integral of the two-point Lagrangian co
relation of the stochastic velocity. If this integral is finite, th
mean square displacement of the particles is asymptotic
diffusive ~linear in time!. More complex processes~subdif-
fusive or superdiffusive! can also appear when the integral
zero or divergent. Since this early work there have be
rather few analytical approaches and results to this prob
~see the reviews of Lumley@2# and McComb@3#!. The do-
main of validity of various theories is determined by t
value of the Kubo numberK. The latter is defined as the rati
of the average distance covered by the particles during
correlation time of the stochastic velocity field to its corre
tion length. From a physical point of view, the Kubo numb
is a measure of the particle’s capacity of exploring the sp
structure of the velocity field before the latter changes.
mathematical terms it is a parameter that determines the
portance of the Lagrangian nonlinearity introduced by
space dependence of the velocity field. In the quasilin
regimeK,1, the results are well established: The Lagran
ian correlation is determined using the Corrsin approxim
tion @3,4# and the resulting diffusion coefficient has the sc
ing Dql;K2. In the nonlinear caseK.1, all theoretical
models~which actually are explicitly or implicitly based o
the Corrsin approximation! lead to a Bohm-like diffusion
coefficientDB;K @5–9#. This is not a correct result since
does not vanish in the limit of frozen turbulence as it shou
PRE 581063-651X/98/58~6!/7359~10!/$15.00
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There is only one qualitative theoretical estimation
Isichenko @10,11#, which is based on an analogy with th
problem of percolation in stochastic landscapes and de
mines the scaling law of the diffusion coefficient at hig
Kubo numbers asDI;K0.7. Extended studies based on dire
numerical simulations of the trajectories have also been
formed @12–16#. They confirm the Isichenko scaling fo
some spectrum of the turbulence@12,13#. Moreover, they
provide detailed information about statistical characteris
of the trajectories.

We present here a statistical approach to the test par
diffusion in a Gaussian stochastic velocity field that provid
an analytical approximation for the Lagrangian correlati
which is valid over the whole range between the quasilin
regime and the nonlinear one. Thus the time-dependent
fusion coefficient is obtained~not only its scaling withK like
in Ref. @10#!. The main ingredient of the model is the co
cept of decorrelation trajectorywhich determines the dy
namics of the decorrelation process. Its validity is proved
several characteristics. The most important is that the di
sion coefficient has aK dependence close to the ‘‘percola
tion’’ estimate in the nonlinear regime. In the smallK limit
the quasilinear result is recovered. Also, the Lagrangian c
relation of the potential is correctly reproduced by the mo
as well as the shape of the Lagrangian correlation of
velocity components determined in a direct numerical sim
lation. It was shown@17,18# that the physical reason for th
subunitary exponents in the Kubo number scaling of the
fusion coefficients is the trapping of the particles in the str
ture of the random field. Our model describes this comp
cated trapping process.

The paper is organized as follows. The problem is int
duced in Sec. II. Then, in Sec. III, we present a discuss
about the Corrsin approximation and the results obtained
this framework. We show that the possibilities of improvin
this approximation in order to extend its application range
the high Kubo numbers regime are rather closed. The de
relation trajectory method is described in Sec. IV, while S
V is devoted to the presentation of the results we have
tained and their physical interpretation. The conclusions
summarized in Sec. VI.
7359 © 1998 The American Physical Society
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II. EULERIAN AND LAGRANGIAN CORRELATIONS

We consider a two-dimensional Langevin equation

dx„t…

dt
5v„x~ t !,t…, x~0!50, ~1!

where the velocity fieldv(x,t) is a space- (x… and time-~t!
dependent continuous function in each realization. We
interested in incompressible velocity fields¹•v(x,t)50, as
appearing, e.g., in an electrostatic turbulence of a magn
cally confined plasma, wherev is theE3B drift velocity of
the guiding centers of the charged particles. A stream fu
tion ~or a potential! is introduced that determines the tw
components of the velocity asv(x,t)52¹f(x,t)3ez . The
stream functionf(x,t) is a stochastic field considered to b
Gaussian, stationary, and homogeneous. Since the vel
components are the derivatives of the stream function, t
are Gaussian, stationary, and homogeneous as well. The
lerian averages of the stream function and velocity are z
The two-point Eulerian correlation~EC! function of the
stream function is given. This is a measurable quantity
fined as the statistical average of the stream function in
points. We chose the following model for the EC:

E~x,t ![^f~x1 ,t1!f~x11x,t11t !&5b2E~x!expS 2
utu
tc

D .

~2!

Due to the stationarity and homogeneity conditions, this
erage depends only on the distancex between the two points
and on the time intervalutu. Angular brackets denote the st
tistical average over the realizations of the stochastic str
function field,b is the amplitude of the stream function flu
tuations, andtc is their correlation time.E(x) is a function
that decays fromE(0)51 ~where it has a maximum! to zero
when uxu→`; its form is left unspecified at this stage. W
consider an isotropic turbulence and thus the EC is a fu
tion of uxu only. In terms of these parameters, the Kubo nu
ber is

K5Vtc /l, V5b/l, ~3!

whereV measures the amplitude of the fluctuating veloc
andl is the average wavelength determined from the Fou
transform ofE(x,t), which is the spectrum of the strea
function fluctuations. The two-point EC of the velocity com
ponents and of the stream function with the velocity are
tained fromE(x,t) by appropriate derivatives:

Exx52
]2

]y2 E, Eyy52
]2

]x2 E, Exy5
]2

]x ]y
E,

~4!

Exf52Efx5
]

]y
E, Eyf52Efy52

]

]x
E,

where Ei j (x,t)[^v i(0,0)v j (x,t)& and Ef i
[^f(0,0)v i(x,t)&.

In principle, the solution of this problem consists of fin
ing the probability density for the displacements at any ti
t. This is a very difficult task that is usually reduced to fin
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ing the mean square displacement~MSD! ^x2(t)& and the
diffusion coefficient. Using the formal solution of Eq.~1!,

xi~ t !5E
0

t

dt v i„x~t!,t…,

Taylor @1# has found a general expression for the MSD:

^xi
2~ t !&5E

0

t

dt1E
0

t

dt2Lii ~t1 ,t2!, ~5!

where

Lii ~t1 ,t2![^v i„x~t1!,t1…v i~x~t2!,t2!& ~6!

is thetwo-point Lagrangian correlation~LC! functionof the
velocity components. In the stationary and homogene
case one can consider that the LC is a function of the t
interval t5ut12t2u and Eq.~5! reduces to

^xi
2~ t !&52E

0

t

dt Lii ~t!~ t2t!. ~7!

The diffusion coefficient defined asDi(t)[
1
2 (d/dt)^xi

2(t)&
is

Di~ t !5E
0

t

dt Lii ~t!. ~8!

Thus the Lagrangian correlationLii (t) determines both
the diffusion coefficient and the MSD of the trajectorie
Consequently, the problem reduces to the determination
the Lagrangian correlation of the velocity components cor
sponding to the given Eulerian correlation of the stre
function. We present an analytical approximation~the decor-
relation path method! to solve this problem for any value o
the Kubo numberK. In order to give a better understandin
of the physical significance of the method, we start with
short description of the Corrsin approximation and the
sults obtained in this frame.

III. THE CORRSIN APPROXIMATION

The Corrsin approximation@3,4# was extensively used in
fluid and plasma physics in the past 30 years. It consist
two hypotheses:~i! The particle trajectories are statistical
independent of the stochastic velocity field and~ii ! the dis-
placements have a Gaussian distribution.

In this framework, the LC of the velocity components
obtained as

Li j ~ t !5E dx Ei j ~x,t !P~x,t !, ~9!

whereP(x,t) is the probability density for the displacemen
x in the time intervalt, which, according to assumption~ii !,
is of Gaussian type:

P~x,t ![
1

2p^x2~ t !&
expS 2

x2

2^x2~ t !&
D . ~10!
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Since the mean square displacement^x2(t)& is determined by
the Lagrangian correlation@Eq.~7!#, a closed set of equation
is obtained. The LC is thus determined as the solution
Eqs.~9!, ~10!, and~7!.

One can easily see that in the quasilinear limit whenK
!1, the MSD during the correlation timetc is much smaller
thanl2 and the resulting narrow probability density can
approximated in the integral in Eq.~9! by d(x). The LC is
then given by

Li j ~ t !>Ei j ~0,t !, K!1, ~11!

which determines a diffusion coefficient

Dql>V2tc5~l2/tc!K
2. ~12!

This is the well established quasilinear result. The Corr
approximation is very good in the rangeK,1 and it can
determine perturbative corrections of the diffusion coe
cient ~12!.

At large K, Eq. ~9! determines the narrowing of the LC
~whose width decreases fromtc to l/V) and thus a slower
dependence of the diffusion coefficient on the Kubo num
is obtained. It was shown@5–9# that the scaling of the diffu-
sion is of Bohm type:

DB;Vl5~l2/tc!K. ~13!

A fundamental criticism of this result is that in the limit o
frozen turbulence (tc→`) the diffusion coefficient~13!
does not vanish. In that case all trajectories wind arou
fixed closed contour lines of the stream function and
MSD cannot grow linearly in time so that the asympto
diffusion coefficient has to be zero. The numerical simu
tions @12,13# confirm this idea showing that for some spe
trum of the turbulence the scaling of the diffusion coefficie
in K is

DI;~l2/tc!K
0.7, ~14!

as predicted by Isichenko@10#. It was shown@18# that in
physical terms, the Bohm diffusion coefficient~13! ~and con-
sequently the Corrsin approximation! corresponds to neglect
ing the process of trajectory trapping in the structure of
stochastic stream function.

The origin of the Corrsin approximation~9! is the exact
equation

Li j ~ t !5E dx Ei j
c @x,tux~ t !5x#P~x,t !, ~15!

whereEi j
c @x,tux(t)5x#[^v i(0,0)v j (x,t)&ux(t)5x is the con-

ditional correlation corresponding to the condition that t
trajectory is at the pointx at timet. This correlation has both
Eulerian and Lagrangian properties: It is calculated at fix
points like the EC but depends on the trajectories like
LC. Using the first assumption of the Corrsin approximati
the Lagrangian character ofEi j

c is neglected; thusEi j
c is re-

placed byEi j . We note that in the special case of Gauss
displacements it is possible to calculate the conditional c
relationEi j

c . Consequently, the first hypothesis can be elim
nated and the LC can be determined under the restrictio
the Gaussian hypothesis~ii ! only. However, the resulting dif-
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fusion coefficient has, at largeK, the same Bohm scaling
~13! as obtained from the Corrsin approximation. The co
clusion is that the displacements are not Gaussian at l
K. This is confirmed by direct numerical simulations
particle trajectories@12,14,17#, which show that the distribu-
tion of displacementsP(x,t) develops a peak aroundx50
and large tails. This feature ofP(x,t) results from the pro-
cess of particle trapping in the structure of the stocha
stream function: when the particles are moving near
maxima or minima of the stream function they wind for lon
time on almost closed paths of small size. Large displa
ments are performed only when they are in regions of sm
absolute values of the stream function.

The conclusion of this analysis is that the Gaussian
sumption ~ii ! must be eliminated. However, for non
Gaussian displacements it is practically impossible to de
mine the conditional correlationEi j

c ~apart for some
perturbative corrections that apply atK>1 @19,20#!. It fol-
lows that the possibilities for advancing beyond the Corr
approximation~9! using the exact equation~15! are practi-
cally closed and that a completely different starting po
should be found to study the diffusion in the highK nonlin-
ear regime. The physical process that determines the re
tion of the diffusion coefficient from Bohm to Isichenk
scaling and also the non-Gaussian character of the displ
ments appears to be the trapping of the particles in the st
ture of the stochastic stream function. Thus the models m
describe this complicated process explicitly.

IV. THE DECORRELATION PATH METHOD

The essential point of the present method is that it find
set of deterministic trajectories that are determined by the
of the stream function; the LC of the velocity is then a
proximated using the average velocity on these trajector
The idea is to divide the space of realizations of the stoch
tic stream function into subensembles characterized by g
values of the stream function and the velocity at the start
point of the trajectories:

f~0,0!5f0, v~0,0!5v0. ~16!

The Eulerian correlation of the velocity componentsEi j (x,t)
can be decomposed into a weighted sum of the Eule
correlations of the velocity in each subensemble:

Ei j ~x,t !5EEdf0dv0P1~f0!P1~v0!Ei j
s ~x,t !, ~17!

where Ei j
s (x,t)[^v i(0,0)v j (x,t)&uf0,v0 is the subensemble

Eulerian correlation, i.e., it is an average conditioned by E
~16!. P1(f0) andP1(v0) are the Gaussian probability dens
ties for the initial stream function and the initial velocity
respectively. The stream function and the velocity are sta
tically independent at the same point: Their correlation~4! is
zero inx50 whereE(x) has a maximum. Consequently, th
probability density for having the condition~16! is
P1(f0)P1(v0). We note that Eq.~17! is an exact equation
The Eulerian correlation in the subensemble can be wri
as Ei j

s (x,t)5v i
0^v j (x,t)&uf0,v0, where ^v j (x,t)&uf0,v0 is the

Eulerian average velocity in the subensemble~16!. The latter
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is determined using the Gaussian conditional probab
density for having the velocityv in the point (x,t) when the
condition ~16! is imposed:

P~v,x,tuf0,v0!

[
^d„v2v~x,t !…d„f02f~0,0!…d„v02v~0,0!…&

^d„f02f~0,0!…d„v02v~0,0!…&
.

Straightforward calculations lead to

^v~x,t !&uf0,v05f~x;f0,v0!expS 2
t

tc
D , ~18!

where

f x~x;f0,v0!52vx
0 ]2E~x!

]y2
1vy

0 ]2E~x!

]x ]y
2f0

]E~x!

]y
,

f y~x;f0,v0!5vx
0 ]2E~x!

]x ]y
2vy

0 ]2E~x!

]x2
1f0

]E~x!

]x
.

Equation~18! exhibits the space-time structure of the cor
lated zone. The average velocity in the subensemble~16! is
v0 in x50 andt50 @becauseE(x) has a maximum there# and
it decays progressively to zero as the time and/or the dista
grows. Both time@through the factor exp(2t/tc)] and dis-
tance@through the factorf(x;f0,v0)] determine the decorre
lation of the velocity.

In the quasilinear caseK!1, the decorrelation is mainly
temporal~on the time scaletc) and the space factor in th
Eulerian correlation reduces tov0. Equation~18! becomes
^v(x,t)&uf0,v0>v0exp(2t/tc) and the well known quasilinea
result @Eqs.~11! and ~12!# is obtained.

In the nonlinear caseK.1, the space decorrelation is im
portant. Our method consists in determining the dynamic
decorrelation represented by a set of deterministic traje
ries and to approximate the Lagrangian correlation by us
these trajectories.

The time variation of the stochastic stream function de
mines the time decay of the Eulerian correlations. This i
linear term in the sense that in the absence of space de
dence of the velocity in Eq.~1!, the problem is linear and th
Lagrangian correlation is simply determined by the EC ax
50 @Eq. ~11!#. The space depending factorf that appears in
the subensemble average velocity~18! describes the structur
of the correlated zone. We determine the dynamics indu
by this structure by solving the equation

dX~ t !

dt
5f„X~ t !;f0,v0

…, X~0!50. ~19!

The solution of this equationX(t;f0,v0), which will be
called the space decorrelation trajectory, determines the
typical evolution in the correlated zone and the way to lea
it. We note thatX(t;f0,v0) is not an approximation of the
average particle trajectory in the subensemble: Rather, it
deterministic trajectory that represents the dynamics of
space decorrelation. Using for simplicity a reference fra
y
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with the x axis directed alongv0 and dimensionless quant
ties X5X/l, t̄ 5t/tc , u5uv0u/V, and p[f0/uv0ul, Eq.
~19! becomes

dX̄

dt
52

]

]Ȳ
S ]

]Ȳ
1pD E~X̄,Ȳ!,

~20!
dȲ

dt
5

]

]X̄
S ]

]Ȳ
1pD E~X̄,Ȳ!,

where a time variablet[Ku t̄ is introduced. This system ha
a Hamiltonian structure determined by the incompressibi
of the stochastic velocity field in Eq.~1!. The Hamiltonian

H~X̄,Ȳ![S ]

]Ȳ
1pD E~X̄,Ȳ! ~21!

is independent of the Kubo numberK and depends only on
the parameterp, which is essentially the initial stream func
tion f0. Thus the solution of Eqs.~20! is a function of only
two variablest[Ku t̄ andp: X( t̄ )[X(t,p). Depending on
the EC and on the parametersu,p, two types of trajectories
can be obtained:~a! trajectories on which the velocity goe
to zero~decorrelates fromv0) and~b! closed periodic trajec-
tories. Type~a! trajectories escape from the correlated zo
while type~b! trajectories are confined in it. Type~b! trajec-
tories describe the trapping in the structure of the veloc
field.

We introduce the average velocity observed along
decorrelation trajectory in each subensemble~16!. Since this
trajectory is deterministic, the latter is obtained by replac
x by X(Kut,p) on the right-hand side of Eq.~18!:

^v„X~t,p!, t̄ …&uf0,v05S b

l Du
dX~t,p!

dt
exp~2 t̄ !. ~22!

The approximation on which our model is based cons
in considering that the Lagrangian correlation of the veloc
components is a weighted sum of the correlations obser
along the decorrelation trajectoriesin each subensembl
~16!. Namely, starting from the Eulerian frame equation~ 17!
and using the conditionally averaged velocities on the de
rrelation trajectories~22!, we approximate the Lagrangia
correlation as

Li j ~ t̄ !>EEdf0dv0P1~f0!P1~v0!v i
0^v j„X~ t̄ !, t̄ …&uf0,v0.

~23!

The validity of this approximation will be proveda poste-
riori by the results obtained by our model for several qu
tities. After straightforward calculations consisting of the i
tegration over the orientation ofv0 and the change o
variablef0→p, one obtainsLxy( t̄ )>0 and

Lxx~ t̄ !>Lyy~ t̄ !>S b

l D 2

G~K t̄ !exp~2 t̄ !, ~24!

where
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G~K t̄ !5
1

A2p
EE

0

`

dp du u4expS 2
u2~11p2!

2 DdX~t,p!

dt
.

~25!

X(t,p) is the x component of the decorrelation trajectori
determined from Eq.~20! and t[Ku t̄. We note that the
Corrsin approximation also determines this symmetry of
LC @Li j (t)5d i j L(t)#.

The running diffusion coefficient is

D~ t̄ ;K !5
l2

tc
KE

0

t̄
du G~u!expS 2

u

K D ~26!

and the asymptotic diffusion coefficient can be written as

D~K !5
l2

tc
E

0

`

du F~u!expS 2
u

K D , ~27!

whereF(u)5*0
uG(t)dt. Equations~24! and ~25!, together

with the equations for the space decorrelation trajecto
~20!, form a closed system of equations for determining
Lagrangian correlation of the velocity.

V. TESTS AND RESULTS

An important test of the methods of studying the diffusi
in incompressible velocity fields consists in applying them
determine the LC of the stream function. As the velocity
always tangential to the contour lines of the stream funct
in the incompressible flow~1!, the time variation of the La-
grangian stream function is determined only by the expl
time dependence df„x(t),t…/dt5]f„x(t),t…/]t and
its Lagrangian correlation isLf(t)[^f(0,0)f„x(t),t…&
5b2exp(2t/tc), independent of the space factorE(x) in the
Eulerian correlations and ofK. It is easily shown that the
decorrelation path model reproduces this property. Using
conditional probability density for the stream function val
f at the point„x,t) when the condition~16! is imposed, the
average Eulerian stream function is determined as

^f~x,t !&uf0,v05buS ]

]y
1pD E~x!expS 2

t

tc
D . ~28!

The average stream function on the decorrelation trajec
is obtained by replacingx by the space decorrelation traje
tory in this equation. Since the Hamiltonian~21! is a constant
of the motionH„X(t),Y(t)…5H(0,0)5p and noting that, by
definition,bup5f0, one obtains

^f„X~ t !,t…&uf0,v05f0expS 2
t

tc
D .

The LC of the stream function is determined by using
approximation equivalent to Eq.~23!:

Lf~ t !>EEdf0dv0P1~f0!P1~v0!f0^f„X~ t !,t…&uf0,v0,

which givesLf(t)5b2exp(2t/tc), as it should. We note tha
the Corrsin approximation reproduces this result only in
limit of small Kubo numbers. At high Kubo numbers th
e
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approximation determines a much narrower LC of the stre
function that depends onE(x) and K ~its width decreases
whenK increases!.

In order to proceed, we have to specify the space dep
denceE(x) of the EC of the stream function~or, equiva-
lently, the wave number spectrum!. We model the EC of the
stochastic stream function by

E~x!5
1

~11r 2/2nl2!n
, ~29!

wherer 25x21y2. This function ensures an amplitude of th
velocity fluctuationV5AEii (0,0)5b/l, as in Eqs.~3!. We
taken50.85 to have a tail of the correlation similar to th
considered in the numerical simulations@12,13#. A study of
the dependence of the diffusion coefficient onn will be pre-
sented later. The Hamiltonian of the decorrelation paths~21!
becomes

H~x!5
1

~11r 2/2n!nS p2
y

11r 2/2n
D ~30!

and using the invariance ofH(x) along the decorrelation
trajectories, the system of equations~20! can be written as

dR

dt
5

1

~11R2/2n!n11

X

R
,

~31!
Y52p~11R2/2n!@~11R2/2n!n21#,

whereR(t)5AX2(t)1Y2(t).
The decorrelation paths~31! are presented in Fig. 1 fo

several subensembles labeled by the values ofp. All decor-
relation paths are closed curves except the path forp50,
which is the straight line alongv0. The sizeRmax of the paths
grows continuously when the absolute value ofp decreases.
It can be approximated asRmax>2/upu when upu@1 and as
Rmax>(2n)(n11)/(2n11)upu21/(2n11) whenupu!1. The decorrela-
tion trajectories@resulting from the numerical integration o
Eq. ~20!# are periodic functions oft[Ku t̄ ~except for p

FIG. 1. Decorrelation paths forp50,60.5,61, . . . . Thesize of
the curves decreases continuously withupu.
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50). This shows that in the two-dimensional incompressi
velocity fields the space decorrelation cannot be produ
@practically all decorrelation trajectories are of type~b!# and
a subdiffusive behavior is expected in the static casetc
→`. This is a representation of the topology of the real flo
that is characterized by a vortical motion~eddies!.

The correlation of the Lagrangian velocity components
calculated according to Eqs.~24! and ~25! using the decor-
relation trajectories. Two time factors compete in determ
ing the shape of the Lagrangian correlation~24!: the expo-
nential that accounts for the explicit time decorrelation a
the functionG(Kt), which is determined by the Lagrangia
nonlinearity. This function is calculated numerically and
presented in Fig. 2. The functionG(u) has a positive par
~with a maximum atu50) that decreases to zero atu0 ,
followed by a negative minimum atum and by a very long
negative tail. The positive and negative parts have equa
eas so that the integral ofG(u) is zero:

E
0

`

G~u!du50. ~32!

This property can be deduced analytically. The funct
G(u) is a representation of the space structure of the stoc
tic stream function: It is determined by the space correlat
E(x). Actually, for the particular case of two-dimensison
incompressible flows, the general shape ofG(u) is the same
for all correlations~being the consequence of the incom
pressibility! and only the details~e.g., the values ofu0 and
um) depend onE(x).

At small Kubo numbers the exponential factor preva
@G(Kt)>1 in the range where the exponential is sign
cantly different from zero#. The decorrelation is tempora
and Lxx(t)>(b/l)2exp(2t/tc). The nonlinear factorG(Kt)
becomes decisive at high Kubo numbers, where it provide
time variation faster than that of the exponential factor. T
Lagrangian correlationLxx(t) at K@1 has a shape similar t
G(Kt), but with the negative tail more attenuated because
the exponential factor. It has a zero att0>u0 /K and a nega-

FIG. 2. LC for K50.2 ~stars! and 10~circles! as a function of

K t̄ , compared to the two factors in Eq.~24!. At small K the LC is

close to exp(2 t̄), while at largeK it has the shape ofG(K t̄ ).
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tive minimum attm>um /K. A direct comparison of the LC
@Eq. ~24!# with the results obtained in the numerical simul
tion @12,17# cannot be performed because the latter are
tained with a nonstationary~oscillatory! field energy. More-
over, the EC resulting from the wave number spectr
considered there is a very complicated function: It is n
axisymmetric and has a large number of maxima a
minima. However, as seen in Fig. 3, there is good qualita
agreement between the two results. Figure 3~a! presents the
LC calculated for two values of the Kubo number@one in the
nonlinear regime (K5160) and the other in the transitio
zone (K54)] as a function of the scaled variableK t̄ . The
numerical LC for the same values ofK is shown in Fig. 3~b!.
One can see that in both cases the zero and the minimu
the LC scales as 1/K, suggesting that the general expressi
of the LC @Eq. ~24!# is correct. The oscillations observed
Fig. 3~b! on the tail of the LC are probably determined by t
complicated shape of the corresponding EC, which has m
maxima and minima.

The largeK numerical simulations of particle trajectorie
show that during their evolution the particles are tempora
trapped on almost closed, small size paths for durations l
enough for performing a large number of rotations. Su

FIG. 3. LC ~a! determined by the decorrelation path method a
~b! calculated from the numerical simulations forK5160 ~continu-
ous lines! and 4 ~dashed lines!.
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trapping events appear around the extrema of the str
function, while long displacements are performed when
particles are moving at small absolute values of the stre
function. Our model gives an image of this rather comp
cated trapping process that is actually contained in the
grangian correlation~24!. The shape of the nonlinear facto
G(u) is determined by a selected contribution of the vario
paths~i.e., subensembles!. The small paths with a large valu
of upu ~i.e., of the stream functionuf0u) contribute only at the
peak ofG(u) at u50. At later times, since these trajectori
perform a large number of rotations, their contributions c
cel by an incoherent mixing in the integral overu. The nega-
tive tail of G(u) results only from the contributions of th
large paths corresponding toupu!1. When there is no time
variation of the stochastic stream function (tc→`) the
asymptotic diffusion coefficient is zero,D;*0

`G(u)du50,
and the process is subdiffusive. A slow time variation (tc
@1 or K@1) produces the attenuation of the negative tail
G(u), thus the elimination of the large paths contributes
the Lagrangian correlation, in other words, the decorrela
of those trajectories. A nonzero diffusion coefficient resu
from this release of the large size trajectories. Actually,
diffusion is produced only by the latter trajectories and n
by the small ones whose contribution is not affected by
time decorrelation: Eddying regions, associated with
maxima of the stream function, continue to exist. When
time variation becomes fast (tc!1 or K!1), all trajectories
are decorrelated and the functionG does not influence the
diffusion coefficient. Thus the two factors evidenced in t
Lagrangian correlation~24! have a clear physical interpreta
tion. The nonlinear termG describes the trapping of particle
near the extrema of the stream function while the linear f
tor exp(2t/tc) accounts for the trajectory release. The L
grangian correlation, and consequently the diffusion coe
cient, results from the competition between trapping a
release processes.

The trajectory trapping is also evident in the running d
fusion coefficient. Figure 4 represents the functionD(t) cal-
culated with the space decorrelation method, Eq.~26!, and
with the Corrsin approximation~9!. One can see that impor

FIG. 4. Time-dependent running diffusion coefficient obtain
with the decorrelation path method~continuous line! and with the
Corrsin approximation~dashed line!.
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tant differences appear. The Corrsin diffusion coefficie
grows continuously and saturates while the decorrela
path diffusion coefficient decays after reaching a maxim
and finally saturates. This clearly shows that the diffusion
partly hindered due to trapping. The effect of trapping a
pears at times large enough so that the particles can exp
the stochastic stream function.

The K dependence of the asymptotic diffusion coefficie
~27! obtained for the Eulerian correlation~29! is presented in
Fig. 5. After the smallK quasilinear regime, a slower depe
dence on Kubo number is observed. TheK dependence of
the diffusion coefficient is weaker than in the Bohm scali
~confirming the presence of trajectory trapping in o
model!. The diffusion coefficient can be approximated asD
50.81(l2/tc)K

0.64. As seen in Fig. 5, the results of ou
model are close to the percolation scaling@10# for a large
range of the Kubo number fromK>1 to K>100 000. Con-
sidering the values ofK&103 as in the numerical simulation
the maximum relative difference between our results a
their fitting with the percolation scaling is about 10%.

As these results were obtained for a particular choice
the EC of the stochastic stream function, a natural ques
has to be addressed: Does the diffusion coefficient and
scaling inK depend strongly on the shape of the EC or do
it possess invariant features resulting from the qualitat
analysis based on percolation@10#? In order to answer this
question we have studied the dependence of the diffus
coefficient on the tail of the EC represented by the param
n entering Eq.~29!. The diffusion coefficients obtained fo
n50.85, 1, 1.5, and 2 are presented in Fig. 6. One can
there a decrease of the diffusion coefficient withn, in the
high K regime, but the dependence is weak. The exponeng
of the Kubo number scaling (D;Kg) obtained for these val-
ues ofn areg50.64, 0.62, 0.55, and 0.50. Thus the dec
relation trajectory method does not predict the invariance
the diffusion coefficient on the shape of the Eulerian cor
lation. However, we can say that the dependence ofD(K) on
the EC of the stochastic stream function is not strong~in the
range ofK where the numerical calculations have been p
formed, namely,K&103).

It should be noted that the decorrelation path method
several variants. This means that several sets of determ

FIG. 5. Asymptotic diffusion coefficient as a function of th
Kubo number compared to the quasilinear and percolation sca
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tic, fictitious trajectories that describe the dynamics of
decorrelation process can be defined. Although they
rather different, they lead to compatible results, showing t
the decorrelation path method is strong and robust. A po
bility is to use, instead of the space decorrelation trajector
the space-time decorrelation trajectories, which are defined
starting from the subensemble average velocity~18!, not
from its space-dependent factor as in Eq.~19!. Another pos-
sibility is to consider a different class of subensembles
termined by the conditionf(0,0)5f0 instead of Eq.~16!.
This is rather natural since the statistics of the stream fu
tion determines completely the statistics of the velocity fie
Both space and space-time decorrelation trajectories ca
determined in these subensembles. A description of th
variants of the decorrelation path method and a compar
of their results are presented in the Appendix. All the
methods provide approximations for the LC and for the d
fusion coefficient~see Fig. 7!, but, according to the discus
sion presented in the Appendix, the space decorrelation
jectories in the subensembles with fixed stream function
velocity ~Sec. IV! appear to give the better approximation

We finally note that all the results presented here are
neric for the two-dimensional,incompressiblestochastic
flows that appear to be characterized by a process of tem
ral trapping of the trajectories around the extrema of
stream function. However, the decorrelation trajecto
method can also be used for other types of problems
order to illustrate this statement we consider acompressible
two-dimensional flow. It is described by the same Lange
equation~1!, but a stream function cannot be introduced
this case. Thus the statistics of the velocity field should
specified: we consider a two-dimensional Gaussian velo
field that is stationary, homogeneous, and isotropic. The
of the velocity components is modeled by

Exx~x,t !5Eyy~x,t !5V2
1

11r 2/2l2
expS 2

t

tc
D ,

~33!
Exy~x,t !50.

FIG. 6. Dependence ofD(K) on the parametern: n50.85~con-
tinuous line!, n51 ~dashed line!, n51.5 ~dash-dotted line!, andn
52 ~dotted line!.
e
re
t
i-
s,

-

c-
.
be
se
n

e
-

a-
d

e-

o-
e
y
In

n

e
ty
C

The space decorrelation trajectories are determined in su
sembles conditioned byv(0,t)5v0. All these trajectories are
of type ~b!: They are straight lines alongv0 and the velocity
decays to zero ast→`. Using the same approximation as
Sec. IV, one obtains the LC

Lii ~ t̄ !>
1

2S b

l D 2

exp~2 t̄ !E
0

`

dvv3expS 2
v2

2 D 1

11
v2

2
j2

,

~34!

wherej[j(K t̄ ,v) is the dimensionless space decorrelati
trajectory, which in this case is the solution of the algebr
equationj1(v2/6)j35K t̄ . The LC is positive at all times
showing that the trapping on closed trajectories~the eddies!
does not play a role in this case. Also the exponentg of the
Kubo number scaling is no longer subunitary. We have
tained hereg51.34. Changing the EC space dependen
~33! to 1/(11r n/ln), it can be shown that the exponentg
evolves fromgql52 whenn→0 to gB51 whenn→`. The
results are thus completely different from those obtained
the incompressible flow.

VI. CONCLUSIONS

We have presented a method, the decorrelation p
method, by which to study particle diffusion in two
dimensional Gaussian incompressible stochastic velo
fields. This method is able to describe the complex proc
of diffusion and intrinsic trapping in the structure of the st
chastic velocity field. We have introduced the concept
decorrelation trajectories that are determined from the E
rian correlation of the stochastic field and describe the
namics of the
decorrelation process. The Lagrangian correlation of the
locity is approximated using the correlations observed alo
these fictitious, deterministic trajectories. We have obtain
a general structure of the LC@Eqs. ~24! and ~25!#, which

FIG. 7. Comparison of the variants of the decorrelation traj
tory method: space decorrelation conditioned byf0,v0 ~continuous
line!; space-time decorrelation conditioned byf0,v0 ~dotted line!;
space decorrelation conditioned byf0 ~dashed line!; and space-
time decorrelation conditioned byf0 ~dash-dotted line!.
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shows that the effective diffusion results from a competit
between trapping and release processes. In a frozen inc
pressible velocity field, the trapping is permanent and
particle evolution is subdiffusive. A weak time dependen
of the stochastic velocity field (K@1) produces the escap
of a part of the trajectories, namely, of those correspond
to the small absolute values of the stream function, and
effective process becomes asymptotically diffusive. We h
obtained a scaling of the diffusion coefficient with the Ku
number that is close to the numerical results and also to
percolation scaling. The decorrelation path method is a
tistical approximation that yields results in agreement w
the percolation scaling. Our tests show that this approxim
tion is rather strong and robust and that it could be used
large class of problems.

APPENDIX: OTHER APPROXIMATIONS

We present here other variants of the decorrelation tra
tory method. They lead to rather different expressions for
diffusion coefficient, but the quantitative results are not ve
different. This shows that the decorrelation trajectory meth
is rather powerful and robust. A comparison of the result
presented in Fig. 7.

1. Space-time decorrelation

We have defined in Sec. IV the space decorrelation
jectories as deterministic trajectories that describe the
namics of the space decorrelation in each subensemble~16!.
They are determined by the space dependence of the E
the stream function field, i.e., by the wave number spectr
It is also possible to determine another class of determinis
fictitious trajectories, which will be calledspace-time decor-
relation trajectories. They are solutions of

dX8~ t !

dt
5^v„X8~ t !,t…&uf0,v0. ~A1!

The subensemble average velocity on the right-hand sid
this equation is given by Eq.~18!. All these trajectories
asymptotically saturate and the velocity along them goe
zero. They essentially determine the distance traveled in e
subensemble before the time decorrelation takes place. In
time variablet8[Ku@12exp(2t/tc)#, Eq. ~A1! is the same
as Eq.~20! and the space-time decorrelation trajectoriesX8
can be expressed in terms of the space decorrelation tr
tories X as X8(t)5X$Ku@12exp(2t/tc)#,p%. The paths are
the same, but for the trajectoriesX8(t) the period of winding
around these paths increases continuously in time; eventu
the trajectories stop. Approximating the LC of the veloc
components by means of the subensemble average vel
alongX8(t) as in Eq.~23!, one obtains after straightforwar
calculationsLi j8 (t)5d i j L8(t), where

L8~ t !>S b

l D 2

GH KF12expS 2
t

tc
D G J expS 2

t

tc
D ~A2!

and the asymptotic diffusion coefficient

D8~K !5
l2

tc
F~K !K, ~A3!
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whereF is the same function as in Eq.~27!. Although these
expressions are different from those obtained with the sp
decorrelation trajectories@Eqs.~24!, ~25!, and~27!# the quan-
titative results are similar. The two diffusion coefficients@D8
from Eq. ~A3! andD from Eq. ~27!# are the same at smallK
and have the same scaling inK in the highK regime. One
can show analytically thatD8.D whenK is of order 1 and
D.D8 when K@1, but the differences are not large~see
Fig. 7!. Thus both methods provide compatible approxim
tions for the diffusion coefficient. However, a qualitativ
comparison of the LC~A2! and~24! with the LC determined
from the direct numerical simulation of particle trajectori
@Fig. 3~b!# shows that the results obtained with the spa
decorrelation trajectories are better. Equation~24! deter-
mines a 1/K dependence of the zero and of the minimum
the LC at intermediate and large values ofK as observed in
the numerical simulation~see Fig. 3!. The space-time deco
rrelation result~A2! does not have this property.

2. Stream function conditioning

The stream function fieldf(x,t) determines the two com
ponents of the velocity field and its statistics determines
statistics of the velocity. Consequently, the values of
stream function could be sufficient as a condition for det
mining the subensembles in the decorrelation path meth
Indeed, a variant of the method can be constructed by el
nating the initial velocity in the condition~16!. The condi-
tionally averaged velocity is

^v r~x,t !&uf050, ^vu~x,t !&uf05f0
dE~r !

dr
expS 2

t

tc
D ,

~A4!

where the polar coordinates (r ,w) for x are introduced. This
determines particularly simple equations for the space de
relation trajectories:

dR

dt
50, R

dw

dt
5Kf0

dE~R!

dR
. ~A5!

They show that the decorrelation paths are concentric cir
around the origin. The trajectory corresponding to the init
conditionX(0)50 is trivial @X(t)50#, so we need to con-
sider nonzero initial conditions and integrate over the spa
A measure has to be introduced in this integral: We assum
it to be the probability that a given point is on a contour li
of f(x,t) that has the linear sizeR. This is estimated in@10#
asP(R);1/R2 for largeR. One obtains the LC

Lxx~ t !>S b

l D 2

Gf~Kt !expS 2
t

tc
D , ~A6!

where

Gf~u![
1

2E0

`

dR
E82

R S 12
E 82

R2
u2D expS 2

E 82

2R2
u2D .

~A7!

Gf(u), like G(u) @see Eq.~25!#, has a negative tail and
vanishing integral overu. Also it shows that for largeKt
only the large paths contribute in the LC.
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Alternatively, we can determine the space-time decorre
tion trajectories in the subensemblef0 ~as in Sec. 1 of the
Appendix! and the LC results as

L xx8 ~ t !>S b

l D 2

GfH KF12expS 2
t

tc
D G J expS 2

t

tc
D .

~A8!

Figure 7 shows that both Eqs.~A7! and ~A8! determine
diffusion coefficients that are not very different from tho
obtained from the stream-function–velocity conditionin
-

.

Although this method has the advantage of very simple c
culations, it needs external information~the measure for the
space integration!. The conditioning by both stream functio
and velocity eliminates this problem.

The conclusion of this discussion is that the idea of us
a set of deterministic, fictitious trajectories determined fro
the EC of the fluctuating field provides a rather stro
method for determining the LC and the diffusion coefficie
Several sets of such decorrelation trajectories determ
compatible results. The space decorrelation trajectories in
subensembles with fixed stream function and velocity~Sec.
IV ! appear to give the better approximation.
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